my obsidian vault first commit
This commit is contained in:
3
AI Linear Algebra/.obsidian/app.json
vendored
Normal file
3
AI Linear Algebra/.obsidian/app.json
vendored
Normal file
@@ -0,0 +1,3 @@
|
|||||||
|
{
|
||||||
|
"alwaysUpdateLinks": true
|
||||||
|
}
|
||||||
1
AI Linear Algebra/.obsidian/appearance.json
vendored
Normal file
1
AI Linear Algebra/.obsidian/appearance.json
vendored
Normal file
@@ -0,0 +1 @@
|
|||||||
|
{}
|
||||||
3
AI Linear Algebra/.obsidian/community-plugins.json
vendored
Normal file
3
AI Linear Algebra/.obsidian/community-plugins.json
vendored
Normal file
@@ -0,0 +1,3 @@
|
|||||||
|
[
|
||||||
|
"github-sync"
|
||||||
|
]
|
||||||
33
AI Linear Algebra/.obsidian/core-plugins.json
vendored
Normal file
33
AI Linear Algebra/.obsidian/core-plugins.json
vendored
Normal file
@@ -0,0 +1,33 @@
|
|||||||
|
{
|
||||||
|
"file-explorer": true,
|
||||||
|
"global-search": true,
|
||||||
|
"switcher": true,
|
||||||
|
"graph": true,
|
||||||
|
"backlink": true,
|
||||||
|
"canvas": true,
|
||||||
|
"outgoing-link": true,
|
||||||
|
"tag-pane": true,
|
||||||
|
"footnotes": false,
|
||||||
|
"properties": true,
|
||||||
|
"page-preview": true,
|
||||||
|
"daily-notes": true,
|
||||||
|
"templates": true,
|
||||||
|
"note-composer": true,
|
||||||
|
"command-palette": true,
|
||||||
|
"slash-command": false,
|
||||||
|
"editor-status": true,
|
||||||
|
"bookmarks": true,
|
||||||
|
"markdown-importer": false,
|
||||||
|
"zk-prefixer": false,
|
||||||
|
"random-note": false,
|
||||||
|
"outline": true,
|
||||||
|
"word-count": true,
|
||||||
|
"slides": false,
|
||||||
|
"audio-recorder": false,
|
||||||
|
"workspaces": false,
|
||||||
|
"file-recovery": true,
|
||||||
|
"publish": false,
|
||||||
|
"sync": true,
|
||||||
|
"bases": true,
|
||||||
|
"webviewer": false
|
||||||
|
}
|
||||||
22
AI Linear Algebra/.obsidian/graph.json
vendored
Normal file
22
AI Linear Algebra/.obsidian/graph.json
vendored
Normal file
@@ -0,0 +1,22 @@
|
|||||||
|
{
|
||||||
|
"collapse-filter": true,
|
||||||
|
"search": "",
|
||||||
|
"showTags": false,
|
||||||
|
"showAttachments": false,
|
||||||
|
"hideUnresolved": false,
|
||||||
|
"showOrphans": true,
|
||||||
|
"collapse-color-groups": true,
|
||||||
|
"colorGroups": [],
|
||||||
|
"collapse-display": true,
|
||||||
|
"showArrow": false,
|
||||||
|
"textFadeMultiplier": 0,
|
||||||
|
"nodeSizeMultiplier": 1,
|
||||||
|
"lineSizeMultiplier": 1,
|
||||||
|
"collapse-forces": false,
|
||||||
|
"centerStrength": 0,
|
||||||
|
"repelStrength": 20,
|
||||||
|
"linkStrength": 1,
|
||||||
|
"linkDistance": 30,
|
||||||
|
"scale": 0.7885418390396122,
|
||||||
|
"close": true
|
||||||
|
}
|
||||||
4870
AI Linear Algebra/.obsidian/plugins/github-sync/main.js
vendored
Normal file
4870
AI Linear Algebra/.obsidian/plugins/github-sync/main.js
vendored
Normal file
File diff suppressed because it is too large
Load Diff
10
AI Linear Algebra/.obsidian/plugins/github-sync/manifest.json
vendored
Normal file
10
AI Linear Algebra/.obsidian/plugins/github-sync/manifest.json
vendored
Normal file
@@ -0,0 +1,10 @@
|
|||||||
|
{
|
||||||
|
"id": "github-sync",
|
||||||
|
"name": "GitHub Sync",
|
||||||
|
"version": "1.0.6",
|
||||||
|
"minAppVersion": "0.15.0",
|
||||||
|
"description": "Sync vault to personal GitHub.",
|
||||||
|
"author": "Kevin Chin",
|
||||||
|
"authorUrl": "https://kevin.gd/",
|
||||||
|
"isDesktopOnly": true
|
||||||
|
}
|
||||||
42
AI Linear Algebra/.obsidian/plugins/github-sync/styles.css
vendored
Normal file
42
AI Linear Algebra/.obsidian/plugins/github-sync/styles.css
vendored
Normal file
@@ -0,0 +1,42 @@
|
|||||||
|
/*
|
||||||
|
|
||||||
|
This CSS file will be included with your plugin, and
|
||||||
|
available in the app when your plugin is enabled.
|
||||||
|
|
||||||
|
If your plugin does not need CSS, delete this file.
|
||||||
|
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
.gh-sync-ribbon
|
||||||
|
{
|
||||||
|
order: 100;
|
||||||
|
}
|
||||||
|
|
||||||
|
.gh-sync-status
|
||||||
|
{
|
||||||
|
order: -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
.howto {
|
||||||
|
border: 1px solid var(--background-modifier-border);
|
||||||
|
padding: 10px;
|
||||||
|
}
|
||||||
|
|
||||||
|
.howto_title {
|
||||||
|
font-weight: 600;
|
||||||
|
}
|
||||||
|
|
||||||
|
.howto_text {
|
||||||
|
color: var(--text-muted);
|
||||||
|
font-size: smaller;
|
||||||
|
}
|
||||||
|
|
||||||
|
.my-plugin-setting-text {
|
||||||
|
width: 30em;
|
||||||
|
}
|
||||||
|
|
||||||
|
.my-plugin-setting-text2 {
|
||||||
|
width: 30em;
|
||||||
|
}
|
||||||
|
|
||||||
311
AI Linear Algebra/.obsidian/workspace.json
vendored
Normal file
311
AI Linear Algebra/.obsidian/workspace.json
vendored
Normal file
@@ -0,0 +1,311 @@
|
|||||||
|
{
|
||||||
|
"main": {
|
||||||
|
"id": "306cabb048ae5408",
|
||||||
|
"type": "split",
|
||||||
|
"children": [
|
||||||
|
{
|
||||||
|
"id": "cebe0dc578b68085",
|
||||||
|
"type": "tabs",
|
||||||
|
"children": [
|
||||||
|
{
|
||||||
|
"id": "0c7f6f81494b22b9",
|
||||||
|
"type": "leaf",
|
||||||
|
"state": {
|
||||||
|
"type": "graph",
|
||||||
|
"state": {},
|
||||||
|
"icon": "lucide-git-fork",
|
||||||
|
"title": "Graph view"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "218fa48b36385ee4",
|
||||||
|
"type": "leaf",
|
||||||
|
"state": {
|
||||||
|
"type": "markdown",
|
||||||
|
"state": {
|
||||||
|
"file": "Cardinality.md",
|
||||||
|
"mode": "source",
|
||||||
|
"source": false
|
||||||
|
},
|
||||||
|
"icon": "lucide-file",
|
||||||
|
"title": "Cardinality"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "b3b7ab1942492276",
|
||||||
|
"type": "leaf",
|
||||||
|
"state": {
|
||||||
|
"type": "markdown",
|
||||||
|
"state": {
|
||||||
|
"file": "Generating Set.md",
|
||||||
|
"mode": "source",
|
||||||
|
"source": false
|
||||||
|
},
|
||||||
|
"icon": "lucide-file",
|
||||||
|
"title": "Generating Set"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "29ec7d4c9efa8ba7",
|
||||||
|
"type": "leaf",
|
||||||
|
"state": {
|
||||||
|
"type": "markdown",
|
||||||
|
"state": {
|
||||||
|
"file": "Basis.md",
|
||||||
|
"mode": "source",
|
||||||
|
"source": false
|
||||||
|
},
|
||||||
|
"icon": "lucide-file",
|
||||||
|
"title": "Basis"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "bb51a4c54058852d",
|
||||||
|
"type": "leaf",
|
||||||
|
"state": {
|
||||||
|
"type": "markdown",
|
||||||
|
"state": {
|
||||||
|
"file": "Maximally Linearly Independent.md",
|
||||||
|
"mode": "source",
|
||||||
|
"source": false
|
||||||
|
},
|
||||||
|
"icon": "lucide-file",
|
||||||
|
"title": "Maximally Linearly Independent"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "559e1acb003d876b",
|
||||||
|
"type": "leaf",
|
||||||
|
"state": {
|
||||||
|
"type": "markdown",
|
||||||
|
"state": {
|
||||||
|
"file": "Minimal Generating.md",
|
||||||
|
"mode": "source",
|
||||||
|
"source": false
|
||||||
|
},
|
||||||
|
"icon": "lucide-file",
|
||||||
|
"title": "Minimal Generating"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "3df90b1f443cf806",
|
||||||
|
"type": "leaf",
|
||||||
|
"state": {
|
||||||
|
"type": "markdown",
|
||||||
|
"state": {
|
||||||
|
"file": "Span.md",
|
||||||
|
"mode": "source",
|
||||||
|
"source": false
|
||||||
|
},
|
||||||
|
"icon": "lucide-file",
|
||||||
|
"title": "Span"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "24390bb32fc9f037",
|
||||||
|
"type": "leaf",
|
||||||
|
"state": {
|
||||||
|
"type": "markdown",
|
||||||
|
"state": {
|
||||||
|
"file": "Non-Trivial.md",
|
||||||
|
"mode": "source",
|
||||||
|
"source": false
|
||||||
|
},
|
||||||
|
"icon": "lucide-file",
|
||||||
|
"title": "Non-Trivial"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "3a9733386bb0f391",
|
||||||
|
"type": "leaf",
|
||||||
|
"state": {
|
||||||
|
"type": "markdown",
|
||||||
|
"state": {
|
||||||
|
"file": "Vector Set.md",
|
||||||
|
"mode": "source",
|
||||||
|
"source": false
|
||||||
|
},
|
||||||
|
"icon": "lucide-file",
|
||||||
|
"title": "Vector Set"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"direction": "vertical"
|
||||||
|
},
|
||||||
|
"left": {
|
||||||
|
"id": "23bf5ed577308e8c",
|
||||||
|
"type": "split",
|
||||||
|
"children": [
|
||||||
|
{
|
||||||
|
"id": "4d34557f492e80ca",
|
||||||
|
"type": "tabs",
|
||||||
|
"children": [
|
||||||
|
{
|
||||||
|
"id": "d5049b6e918a91cd",
|
||||||
|
"type": "leaf",
|
||||||
|
"state": {
|
||||||
|
"type": "file-explorer",
|
||||||
|
"state": {
|
||||||
|
"sortOrder": "alphabetical",
|
||||||
|
"autoReveal": false
|
||||||
|
},
|
||||||
|
"icon": "lucide-folder-closed",
|
||||||
|
"title": "Files"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "9cadf18b9b125732",
|
||||||
|
"type": "leaf",
|
||||||
|
"state": {
|
||||||
|
"type": "search",
|
||||||
|
"state": {
|
||||||
|
"query": "",
|
||||||
|
"matchingCase": false,
|
||||||
|
"explainSearch": false,
|
||||||
|
"collapseAll": false,
|
||||||
|
"extraContext": false,
|
||||||
|
"sortOrder": "alphabetical"
|
||||||
|
},
|
||||||
|
"icon": "lucide-search",
|
||||||
|
"title": "Search"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "545002e436d2fd4a",
|
||||||
|
"type": "leaf",
|
||||||
|
"state": {
|
||||||
|
"type": "bookmarks",
|
||||||
|
"state": {},
|
||||||
|
"icon": "lucide-bookmark",
|
||||||
|
"title": "Bookmarks"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"direction": "horizontal",
|
||||||
|
"width": 300
|
||||||
|
},
|
||||||
|
"right": {
|
||||||
|
"id": "f00b6d1145310e81",
|
||||||
|
"type": "split",
|
||||||
|
"children": [
|
||||||
|
{
|
||||||
|
"id": "a7a3514b8c4b410c",
|
||||||
|
"type": "tabs",
|
||||||
|
"children": [
|
||||||
|
{
|
||||||
|
"id": "f3b7c799403e36a9",
|
||||||
|
"type": "leaf",
|
||||||
|
"state": {
|
||||||
|
"type": "backlink",
|
||||||
|
"state": {
|
||||||
|
"collapseAll": false,
|
||||||
|
"extraContext": false,
|
||||||
|
"sortOrder": "alphabetical",
|
||||||
|
"showSearch": false,
|
||||||
|
"searchQuery": "",
|
||||||
|
"backlinkCollapsed": false,
|
||||||
|
"unlinkedCollapsed": true
|
||||||
|
},
|
||||||
|
"icon": "links-coming-in",
|
||||||
|
"title": "Backlinks"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "b1d1f02f4140d619",
|
||||||
|
"type": "leaf",
|
||||||
|
"state": {
|
||||||
|
"type": "outgoing-link",
|
||||||
|
"state": {
|
||||||
|
"linksCollapsed": false,
|
||||||
|
"unlinkedCollapsed": true
|
||||||
|
},
|
||||||
|
"icon": "links-going-out",
|
||||||
|
"title": "Outgoing links"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "45d08aea645d7ac9",
|
||||||
|
"type": "leaf",
|
||||||
|
"state": {
|
||||||
|
"type": "tag",
|
||||||
|
"state": {
|
||||||
|
"sortOrder": "frequency",
|
||||||
|
"useHierarchy": true,
|
||||||
|
"showSearch": false,
|
||||||
|
"searchQuery": ""
|
||||||
|
},
|
||||||
|
"icon": "lucide-tags",
|
||||||
|
"title": "Tags"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "ca70864847c94951",
|
||||||
|
"type": "leaf",
|
||||||
|
"state": {
|
||||||
|
"type": "all-properties",
|
||||||
|
"state": {
|
||||||
|
"sortOrder": "frequency",
|
||||||
|
"showSearch": false,
|
||||||
|
"searchQuery": ""
|
||||||
|
},
|
||||||
|
"icon": "lucide-archive",
|
||||||
|
"title": "All properties"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "e4d111e33a3d52bd",
|
||||||
|
"type": "leaf",
|
||||||
|
"state": {
|
||||||
|
"type": "outline",
|
||||||
|
"state": {
|
||||||
|
"followCursor": false,
|
||||||
|
"showSearch": false,
|
||||||
|
"searchQuery": ""
|
||||||
|
},
|
||||||
|
"icon": "lucide-list",
|
||||||
|
"title": "Outline"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"currentTab": 1
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"direction": "horizontal",
|
||||||
|
"width": 300,
|
||||||
|
"collapsed": true
|
||||||
|
},
|
||||||
|
"left-ribbon": {
|
||||||
|
"hiddenItems": {
|
||||||
|
"switcher:Open quick switcher": false,
|
||||||
|
"graph:Open graph view": false,
|
||||||
|
"canvas:Create new canvas": false,
|
||||||
|
"daily-notes:Open today's daily note": false,
|
||||||
|
"templates:Insert template": false,
|
||||||
|
"command-palette:Open command palette": false,
|
||||||
|
"bases:Create new base": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"active": "0c7f6f81494b22b9",
|
||||||
|
"lastOpenFiles": [
|
||||||
|
"Vectors.md",
|
||||||
|
"Dimensionality.md",
|
||||||
|
"Vector Set.md",
|
||||||
|
"Basis.md",
|
||||||
|
"Maximally Linearly Independent.md",
|
||||||
|
"Vector Spaces.md",
|
||||||
|
"Generating Set.md",
|
||||||
|
"Cardinality.md",
|
||||||
|
"Subspaces.md",
|
||||||
|
"Minimal Generating.md",
|
||||||
|
"Linear Dependency.md",
|
||||||
|
"Linear Combinations.md",
|
||||||
|
"Span.md",
|
||||||
|
"Non-Trivial.md",
|
||||||
|
"Sets.md",
|
||||||
|
"Welcome.md"
|
||||||
|
]
|
||||||
|
}
|
||||||
3
AI Linear Algebra/Basis.md
Normal file
3
AI Linear Algebra/Basis.md
Normal file
@@ -0,0 +1,3 @@
|
|||||||
|
A basis is a [[Generating Set]] that is both [[Maximally Linearly Independent]] and [[Minimal Generating]].
|
||||||
|
|
||||||
|
%%[[Vector Set]]%%
|
||||||
1
AI Linear Algebra/Cardinality.md
Normal file
1
AI Linear Algebra/Cardinality.md
Normal file
@@ -0,0 +1 @@
|
|||||||
|
the number of [[Vectors]] in a [[Vector Set]]
|
||||||
1
AI Linear Algebra/Dimensionality.md
Normal file
1
AI Linear Algebra/Dimensionality.md
Normal file
@@ -0,0 +1 @@
|
|||||||
|
the number of values in a vector %%[[Vectors]]%%
|
||||||
1
AI Linear Algebra/Generating Set.md
Normal file
1
AI Linear Algebra/Generating Set.md
Normal file
@@ -0,0 +1 @@
|
|||||||
|
A generating set is a [[Vector Set]] that when the [[Span]] function is applied generates another distinct set.
|
||||||
3
AI Linear Algebra/Linear Combinations.md
Normal file
3
AI Linear Algebra/Linear Combinations.md
Normal file
@@ -0,0 +1,3 @@
|
|||||||
|
A type of function on a [[Vector Set]] that sums the elements with a corresponding coefficient scalar such as $2x_1+x_2$ or $x_1+x_3$ or for a more generalized equation $\sum_{i=1}^{n}x_i v_i$ where $S = \{v_1,...,v_n\}$ is the vector set and $v_i \in S$ and $x = (x_1,...,x_n)$ is a list of coefficient scalars.
|
||||||
|
|
||||||
|
%% Related to [[Vectors]]%%
|
||||||
1
AI Linear Algebra/Linear Dependency.md
Normal file
1
AI Linear Algebra/Linear Dependency.md
Normal file
@@ -0,0 +1 @@
|
|||||||
|
Linear Independence is a classification for a [[Vector Set]] where all [[Vectors]] of the set cannot be made using a [[Non-Trivial]] Linear Combination of the other vectors in the set. Otherwise they are classified as Linearly Dependent
|
||||||
1
AI Linear Algebra/Maximally Linearly Independent.md
Normal file
1
AI Linear Algebra/Maximally Linearly Independent.md
Normal file
@@ -0,0 +1 @@
|
|||||||
|
A form of [[Linear Dependency]] where if even one vector not already present in the [[Vector Set]] is added from the Vector Space %%[[Vector Spaces]]%% it in habits, it is no longer linearly independent.
|
||||||
3
AI Linear Algebra/Minimal Generating.md
Normal file
3
AI Linear Algebra/Minimal Generating.md
Normal file
@@ -0,0 +1,3 @@
|
|||||||
|
A [[Generating Set]] that will no longer generate the same [[Span]] if even one of its elements is removed
|
||||||
|
|
||||||
|
%%[[Vector Set]]%%
|
||||||
3
AI Linear Algebra/Non-Trivial.md
Normal file
3
AI Linear Algebra/Non-Trivial.md
Normal file
@@ -0,0 +1,3 @@
|
|||||||
|
Any operation not adding a null vector (a completely zeroed out vector) to a vector
|
||||||
|
|
||||||
|
An example of these would be Non-Trivial [[Linear Combinations]] which just are combinations which do not involve a null vector
|
||||||
6
AI Linear Algebra/Span.md
Normal file
6
AI Linear Algebra/Span.md
Normal file
@@ -0,0 +1,6 @@
|
|||||||
|
Span is an function that returns a [[Vector Set]] containing all [[Linear Combinations]] for any given vector set.
|
||||||
|
|
||||||
|
example: $span(S)$.
|
||||||
|
|
||||||
|
also do note that $span(S) = span(span(S))$
|
||||||
|
you cannot maximize a maximal set.
|
||||||
1
AI Linear Algebra/Subspaces.md
Normal file
1
AI Linear Algebra/Subspaces.md
Normal file
@@ -0,0 +1 @@
|
|||||||
|
Subspaces are [[Vector Spaces]] that are a subset of a Vector Space and closed under addition and scalar multiplication.
|
||||||
1
AI Linear Algebra/Vector Set.md
Normal file
1
AI Linear Algebra/Vector Set.md
Normal file
@@ -0,0 +1 @@
|
|||||||
|
A set of [[Vectors]] that are unique and of same [[Dimensionality]].
|
||||||
3
AI Linear Algebra/Vector Spaces.md
Normal file
3
AI Linear Algebra/Vector Spaces.md
Normal file
@@ -0,0 +1,3 @@
|
|||||||
|
A domain of all values that are to be operated in such as the set of all real numbers.
|
||||||
|
|
||||||
|
%%Related to [[Vectors]] and [[Vector Set]]s%%
|
||||||
4
AI Linear Algebra/Vectors.md
Normal file
4
AI Linear Algebra/Vectors.md
Normal file
@@ -0,0 +1,4 @@
|
|||||||
|
|
||||||
|
Vectors are a finite list of values
|
||||||
|
|
||||||
|
They can also be contained in [[Vector Set]]
|
||||||
Reference in New Issue
Block a user